

Verde AgriTech Drilling Confirms From-Surface, High-Grade, Clay hosted Rare Earth Mineralization, Open for Expansion in Minas Gerais, Brazil

- All initial drill holes intersect continuous rare earth mineralization in weathered clays from surface and were still in mineralization at end of hole
- Best intercept: 14.2 metres from surface averaging 6,858 ppm TREO and 1,673 ppm MREO, including 6.0 metres at 8,013 ppm TREO and 1,941 ppm MREO in hole MAV_AD 002
- High dysprosium content, with Dy₂O₃ up to 86 ppm in the best drill intercepts, strengthening the Project's magnet rare earth profile
- Drill results confirm depth continuity of high-grade mineralization below PT-34 trench and materially increase confidence in expanding the broader mineralized footprint
- 200-hole drill program underway to support a maiden NI 43-101 mineral resource estimate targeted for Q1 2026

BELO HORIZONTE, Minas Gerais, Brazil, December 2, 2025 - Verde AgriTech Ltd. (TSX: NPK | OTCQX: VNPKF) ("Verde" or the "Company") is pleased to report assay results from the first three drill holes of its ongoing resource definition program at the Minas Americas Global Alliance rare earths project (the "Project") in Minas Gerais, Brazil.

All three holes intersected continuous, clay-hosted rare earth mineralization from surface, confirming the presence of high-grade mineralized horizons and supporting the potential for significant expansion of the mineralized footprint (see news release dated October 21, 2025).

The current drill campaign, utilizing three rigs, commenced in October 2025 and is designed to test near-surface clay-hosted rare earth oxide ("REO") mineralization. Key objectives are to:

- 1. Extend mineralized zones identified in surface trenching through systematic step-out and infill drilling around trench samples PT-34, PT-36, PT-42 and other high-priority surface anomalies;
- 2. Test additional targets along interpreted mineralized trends; and
- 3. Provide sufficient drill density in priority zones to support an initial NI 43-101 mineral resource estimate ("MRE") targeted for Q1 2026.

Exploration Highlights

 Continuous rare earth mineralization from surface in all three initial holes, hosted in highly weathered clay horizons typical of ionic adsorption clay ("IAC") style deposits.

- High-grade total rare earth oxides ("TREO") and magnetic rare earth oxides ("MREO") from shallow depths, including:
 - MAV_AD 002
 - 14.2 m from surface averaging 6,858 ppm TREO and 1,673 ppm MREO, with Nd_2O_3 1,248 ppm, Pr_6O_{11} 370 ppm, Dy_2O_3 45 ppm and Tb_4O_7 10 ppm;
 - Including 6.0 m (4.0–10.0 m) at 8,013 ppm TREO and 1,941 ppm MREO, with Nd_2O_3 1,241 ppm, Pr_6O_{11} 355 ppm, Dy_2O_3 53 ppm and Tb_4O_7 10 ppm.
 - o MAV_AD 001 (approximately 10 m from trench PT-34)
 - 8.7 m from surface averaging 5,776 ppm TREO and 1,388 ppm MREO, with Nd_2O_3 1,042 ppm, Pr_6O_{11} 305 ppm, Dy_2O_3 34 ppm and Tb_4O_7 8 ppm;
 - Including 5.0 m (0.0–5.0 m) at 6,620 ppm TREO and 1,610 ppm MREO, with Nd_2O_3 1,206 ppm, Pr_6O_{11} 355 ppm, Dy_2O_3 39 ppm and Tb_4O_7 9 ppm.
 - MAV_AD 003
 - 12.2 m from surface averaging 2,563 ppm TREO and 484 ppm MREO, with Nd_2O_3 358 ppm, Pr_6O_{11} 106 ppm, Dy_2O_3 17 ppm and Tb_4O_7 4 ppm;
 - Including 6.2 m (6.0–12.2 m) at 4,543 ppm TREO and 877 ppm MREO, with Nd_2O_3 650 ppm, Pr_6O_{11} 190 ppm, Dy_2O_3 30 ppm and Tb_4O_7 6 ppm.
- The location of these first three holes, relative to previously reported PT-34 trench results, materially increases confidence in the continuity and expansion potential of the mineralized footprint.
- The initial drill program is planned for approximately 200 drill holes by the end of February 2026, with the objective of defining a maiden MRE.
- All holes reported in this release intersected weathered, rare earth-enriched clay horizons consistent with IAC-style deposits.

"Our initial results from shallow drilling at the Minas Americas Global Alliance project validate our belief in the scale and quality of this rare earth discovery," said Cristiano Veloso, Verde's Founder and CEO. "All initial holes intersected continuous mineralization from surface, with strong contributions from high-value magnet rare earths—neodymium, praseodymium, dysprosium and terbium. Combined with the excellent desorbable rare earth response previously reported, these results materially increase our confidence in expanding the mineralized footprint and rapidly advancing towards a maiden mineral resource estimate in Q1 2026.

"Verde is uniquely positioned to advance this project in parallel with our core sustainable fertilizer business. We have existing infrastructure, teams, and capital in the region, and we see a compelling opportunity to contribute to a secure, responsible supply of rare earths needed for the global energy transition," Mr. Veloso added.

Initial Drill Results

Table 1: Results from initial drilling at Minas Americas Global Alliance exploration program

Assays reported as head grades in parts per million ("ppm"). MREO includes Nd, Pr, Dy and Tb oxides. TREO includes all rare earth oxides. All holes are vertical (90°). Based on current interpretation of a gently undulating mineralized horizon, the reported intervals are interpreted to represent true thickness.

Hole ID	From	То	TREO (ppm)	MREO (ppm)	Nd ₂ O ₃ (ppm)	Pr ₆ O ₁₁ (ppm)	Dy ₂ O ₃ (ppm)	Tb ₄ O ₇ (ppm)
MAV_AD_001	0	8.7	5,776	1,388	1,042	305	34	8
including	0	5.0	6,620	1,610	1,206	355	39	9
MAV_AD_002	0	14.2	6,858	1,673	1,248	370	45	10
including	4	10.0	8,013	1,941	1,241	355	53	10
MAV_AD_003	0	12.2	2,563	484	358	106	17	4
including	6	12.2	4,543	877	650	190	30	6

These results demonstrate continuous mineralization from surface across all three holes, with a strong contribution from high-value magnet rare earths (Nd, Pr, Dy, Tb).

Figure 1: Project plan map showing significant intercepts from initial drilling

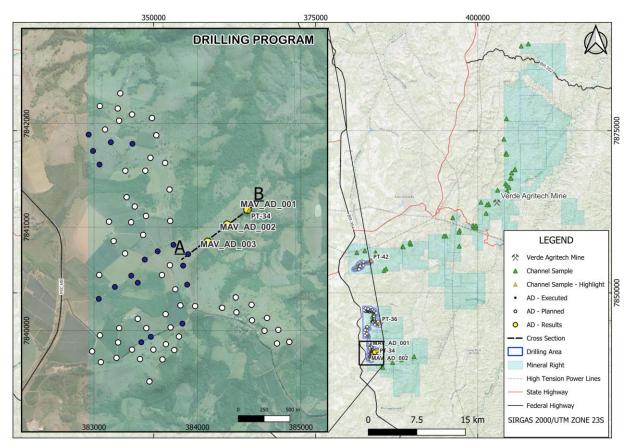
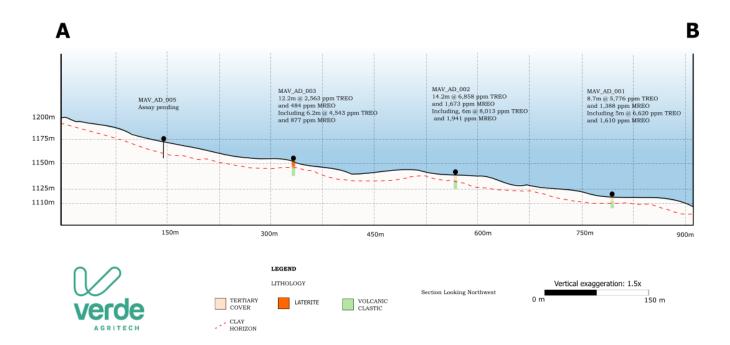



Figure 2: Cross section showing drill holes results

Initial Drilling Summary

The first three drill holes were completed in the priority PT-34 target area. Key observations include:

- Consistent clay-hosted mineralization from surface or near surface down-hole in all holes;
- No significant groundwater issues, enabling efficient drilling and sampling;
- All holes were drilled vertically (90°); based on the current geological model of a gently undulating mineralized clay horizon, reported intervals are interpreted as true thickness;
- Samples were collected on 0.7 m to 1.2 m intervals and dispatched to SGS Geosol for major oxides (ICP-OES) and complete rare earth element analysis (ICP-MS).

PT-34 Trench vs. Drilling: Depth Continuity of High-Grade Mineralization

Trench sample PT-34, previously reported (see news release dated October 21, 2025), returned excellent desorbable rare earth oxide ("DREO") grades with exceptionally low impurities (uranium and thorium at or below detection limits), supporting an IAC-style deposit model.

Vertical hole MAV_AD 001, collared approximately 10 m from PT-34, was designed to test the down-hole continuity of mineralization beneath the trench. Together with MAV_AD 002, the drill results demonstrate strong grade and thickness continuity below PT-34.

Table 2: Comparison of Trench sample PT-34 and hole MAV_AD-002

Parameter	PT-34 Trench (Surface)	MAV_AD-002 (Vertical Auger, 4-10m)	Comments
Average TREO (ppm)	8,615	8,013	Continuity confirmed between surface and depth
Average MREO (ppm)	2,182	1,941	Consistent magnetic REE fraction
Desorbable REO (DREO)	578 mg/kg total, incl. ~240 mg/kg MREO	n/a (head grades reported)	Surface leachability supports IAC style model
Interval length (m)	Surface trench/channel	6.0 m (4–10 m)	Deeper extension of mineralized zone confirmed

The close spatial relationship and similar grade profiles between PT-34 and holes MAV_AD 001 and MAV_AD 002 provide strong support for continuity of mineralization from surface to at least 8–10 m depth, reinforcing the resource expansion potential of this zone.

Metallurgical Program and Ionic Adsorption Clay Confirmation

Verde previously announced that leach tests on Project samples confirmed ionic-adsorption clay behavior with high-value magnet rare earths reporting strongly into solution and almost no contaminants. Using a mild 0.5M ammonium sulfate, 30-minute leach, primary leach solutions returned up to:

- 667 mg/kg desorbable rare earth oxides (DREO); and
- ~278 mg/kg desorbable magnetic rare earth oxides (MREO: Nd, Pr, Dy, Tb),

with magnet REEs representing over 40% of dissolved rare earths. Impurities including thorium and uranium were at or below detection limits, and iron/aluminum were minimal, yielding a clean leachate well suited for downstream upgrading.

The strong DREO response at PT-34 (578 mg/kg total DREO, ~240 mg/kg desorbable MREO, low U and Th) provides an encouraging foundation for the next phase of metallurgical work.

A dedicated metallurgical test program is being planned, including:

- Preparation of composite metallurgical samples from representative drill holes across key clay types and grade ranges;
- Ammonium salt leach tests and related characterization to evaluate DREO, optimize reagent conditions, and assess potential processing routes appropriate for clay-hosted rare earth deposits; and
- More sophisticated, multi-stage metallurgical test work to support a preliminary economic assessment ("PEA").

Results of this metallurgical work will be reported as they become available and are interpreted.

Rare Earths Discovery and Launch of Resource Definition Drilling

In early October 2025, Verde reported the discovery of a continuous, clay-hosted rare earth mineralized zone covering approximately 5,500 hectares across 13 mineral rights, delineated by integrated mapping, geochemistry, geophysics and trench sampling (see news release dated October 6, 2025). Highlight assays included:

- Up to 8,930 ppm TREO and up to 2,182 ppm MREO; and
- 75 trench/surface samples averaging 743 ppm MREO (54 of 75 samples ≥ 400 ppm; 22 of 75 samples ≥ 1,000 ppm).

Samples are NdPr-rich (averaging ~19% of TREO, peaking at 24%) with high-grade dysprosium and terbium—attributes aligned with magnet-grade applications in electric vehicles, robotics and wind turbines.

Following this discovery, Verde initiated a three-rig drilling program at the Project (see news release dated October 9, 2025), with the aim of quickly defining the highest-quality resources and determining the fastest viable path to production.

Next Steps

Verde's ability to advance the Project in an expedited and cost-efficient manner is supported by:

- People: In-house, multidisciplinary teams experienced in mapping, sampling and drilling, enabling a rapid field-to-decision cadence;
- Equipment: Company-owned drill rigs, vehicles, field equipment and integrated IT systems for fast data capture;
- Laboratory: Verde's laboratory supports sample preparation, scout assays and metallurgical screening in parallel with external labs, shortening cycles and de-risking flowsheet choices;
- Execution Experience: In the same region, Verde has brought two mines into production and built two large-scale industrial plants that are in operation today;
- Regional Infrastructure: Roads, bridges and high-voltage power to site have been significantly upgraded by Verde, avoiding years of typical infrastructure lead time.

Key upcoming milestones at the Minas Americas Global Alliance project include:

- Q1 2026: Publication of a maiden NI 43-101 mineral resource estimate;
- Q2 2026: Completion and publication of a PEA to demonstrate project economics.

Qualified Person

The scientific and technical information contained in this news release has been reviewed and approved by **Leonardo Deringer Fraga**, Vice-President of Exploration, P.Geo, who is a **Qualified Person** as defined by National Instrument 43-101 – *Standards of Disclosure for Mineral Projects*.

QAQC

Auger drillholes were completed vertically, and reported intervals are interpreted to represent true thickness. Material from auger drillholes was sampled at nominal one-metre intervals, generating sample weights of approximately 5–25 kg per interval. Samples were split using a Jones riffle splitter to produce

an analytical sub-sample of approximately 1,000 g, with about 3 kg retained as backup material and the remaining material archived.

Bagged samples were shipped to SGS Geosol (Vespasiano, Minas Gerais, Brazil) for sample preparation and analysis. Rigorous procedures were implemented during sample collection, preparation, and analytical stages to help ensure the reliability and robustness of the results.

All analytical results reported herein have been subjected to internal QA/QC review prior to compilation. This news release presents exploration results only and does not constitute a mineral resource or mineral reserve estimate. Forward-looking statements are subject to risks and uncertainties, and actual results may differ materially from those expressed or implied.

ABOUT VERDE AGRITECH

Verde AgriTech is dedicated to advancing sustainable agriculture through the innovation of specialty multi-nutrient potassium fertilizers. The Company's mission is to increase agricultural productivity, enhance soil health and contribute meaningfully to environmental sustainability.

Leveraging its unique position in Brazil, Verde uses proprietary technologies to develop solutions that address the immediate needs of farmers while tackling global challenges such as food security and climate change. Verde's commitment to carbon capture and the production of eco-friendly fertilizers underscores its vision for a future in which agriculture contributes positively to the health of the planet.

For more information, please visit: www.verde.ag and www.investor.verde.ag.

CAUTIONARY LANGUAGE AND FORWARD-LOOKING STATEMENTS

This news release contains "forward-looking information" within the meaning of applicable Canadian securities legislation, including, but not limited to, statements with respect to: the significance of exploration results; the potential for economic extraction of rare earth elements; future exploration and development plans; the outcome of the Board of Directors' review; potential partnerships, strategic alternatives, or value-maximizing structures; the advancement of the Project; and the expected timing of further updates. Forward-looking information is based on management's current expectations, assumptions, estimates, projections and interpretations and involves known and unknown risks, uncertainties and other factors that may cause actual results or events to differ materially from those expressed or implied.

These factors include, without limitation: risks related to exploration-stage projects; the possibility that future exploration results may not support mineral resource or reserve delineation; uncertainties relating to assay and metallurgical results; operational risks inherent in mining; risks associated with maintaining licenses, permits and mineral rights; changes in laws, regulations and government policies; risks related to capital and operating costs; commodity price volatility; financing risks; and other risks described in the Company's most recent annual

information form and other continuous disclosure filings available under the Company's profile at www.sedarplus.ca.

Readers are cautioned not to place undue reliance on forward-looking information. The Company does not undertake to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as required under applicable securities laws.

This news release reports exploration results which are preliminary in nature and do not represent mineral resources or mineral reserves as defined under NI 43-101. There is no certainty that further exploration will result in the delineation of mineral resources or mineral reserves, or that any development decision will be made. Mineralization identified to date is not necessarily indicative of future results.

For additional information please contact:

Cristiano Veloso, Chief Executive Officer and Founder

Tel: +55 (31) 3245 0205; Email: investor@verde.ag

www.verde.ag www.investor.verde.ag

Appendix

Table 3: Drill hole collar information

Hole ID	Easting (UTM)	Northing (UTM)	Elevation (m)	Depth (m, EOH)	Dip	Date Completed				
MAV_AD 001	384,454	7,841,206	1,044	8.70	90°	Nov 15, 2025				
MAV_AD 002	383,282	7,841,027	1,149	14.20	90°	Nov 20, 2025				
MAV_AD 003	384,092	7,840,847	1,172	12.20	90°	Nov 25, 2025				

^{*}EOH = end of hole. Coordinates are reported in SIRGAS 2000/UTM ZONE 23S

Table 4: Full drilling results for holes MAV_AD_0001, MAV_AD_0002 and MAV_AD_0003

Hole ID	From	То	Length	UTMN	UTME	CeO2	Dy203	Er203	Eu203	Gd2O3	Ho2O3	La203	Lu203	Nd2O3	Pr6O11	Sm203	Tb407	Tm203	Y2O3	Yb2O3	TREO	MREO	%NdPr
MAV_AD_0001	0.0	1.0	1.0	384454	7841206	2968	34	9	33	77	4	1331	1	1039	299	139	8	1	104	5	6051	1380	22%
MAV_AD_0001	1.0	2.0	1.0	384454	7841206	3857	49	13	51	117	6	2042	1	1617	490	210	12	1	152	6	8623	2167	24%
MAV_AD_0001	2.0	3.0	1.0	384454	7841206	3132	44	13	42	101	6	1663	1	1299	394	172	10	1	170	7	7054	1747	24%
MAV_AD_0001	3.0	4.0	1.0	384454	7841206	2730	40	11	37	90	6	1326	1	1098	311	151	9	1	140	6	5956	1458	24%
MAV_AD_0001	4.0	5.0	1.0	384454	7841206	2580	31	8	32	73	4	1191	0	977	281	131	7	1	93	4	5411	1296	23%
MAV_AD_0001	5.0	6.0	1.0	384454	7841206	2455	29	7	30	69	4	1151	0	912	265	124	7	1	85	3	5143	1213	23%
MAV_AD_0001	6.0	7.0	1.0	384454	7841206	2341	30	9	29	70	4	1086	1	872	250	119	7	1	108	4	4932	1159	23%
MAV_AD_0001	7.0	8.0	1.0	384454	7841206	2347	29	8	28	66	4	1108	0	873	250	117	7	1	96	4	4938	1159	23%
MAV_AD_0001	8.0	8.7	0.7	384454	7841206	1828	23	6	22	52	3	880	0	690	199	92	5	1	75	3	3880	916	23%
MAV_AD_0002	0.0	1.0	1.0	384454	7841206	3484	43	12	44	103	6	1748	1	1381	417	184	10	1	129	6	7567	1851	24%
MAV_AD_0002	1.0	2.0	1.0	384282	7841027	3102	52	14	47	115	7	1751	1	1356	406	187	12	1	158	7	7217	1826	24%
MAV_AD_0002	2.0	3.0	1.0	384282	7841027	3181	58	15	52	130	8	1854	1	1491	446	209	13	2	173	8	7640	2008	25%
MAV_AD_0002	3.0	4.0	1.0	384282	7841027	2740	35	10	36	83	4	1351	1	1109	325	148	8	1	113	5	5969	1477	24%
MAV_AD_0002	4.0	5.0	1.0	384282	7841027	3055	39	11	39	91	5	1484	1	1210	353	164	9	1	131	6	6599	1611	24%
MAV_AD_0002	5.0	6.0	1.0	384282	7841027	3334	42	12	42	96	6	1642	1	1293	394	172	10	1	146	6	7196	1739	23%
MAV_AD_0002	6.0	7.0	1.0	384282	7841027	3716	43	12	44	101	6	1767	1	1403	430	184	10	1	145	6	7869	1886	23%
MAV_AD_0002	7.0	8.0	1.0	384282	7841027	4523	47	11	53	116	6	2128	1	1742	522	221	11	1	135	5	9520	2321	24%
MAV_AD_0002	8.0	9.0	1.0	384282	7841027	4241	59	17	58	136	8	2047	1	1720	513	234	14	2	204	9	9261	2305	24%

MAV_AD_0002	9.0	10.0	1.0	384282	7841027	3219	86	40	50	147	16	1546	4	1319	364	188	17	5	606	27	7632	1786	22%
MAV_AD_0002	10.0	11.0	1.0	384282	7841027	3105	54	23	42	110	9	1503	2	1229	361	167	11	3	353	14	6986	1656	23%
MAV_AD_0002	11.0	12.0	1.0	384282	7841027	2916	37	11	36	85	5	1367	1	1100	321	149	8	1	141	6	6183	1467	23%
MAV_AD_0002	12.0	13.0	1.0	384282	7841027	1712	21	6	20	49	3	817	0	637	183	85	5	1	78	3	3621	847	23%
MAV_AD_0002	13.0	14.2	1.2	384282	7841027	1308	16	4	16	36	2	625	0	484	141	65	4	0	53	3	2757	644	23%
MAV_AD_0003	0.0	1.0	1.0	384092	7840847	221	3	2	1	4	1	86	0	46	14	7	1	0	20	2	410	64	15%
MAV_AD_0003	1.0	2.0	1.0	384092	7840847	134	3	2	1	3	1	74	0	24	9	3	0	0	21	3	279	37	12%
MAV_AD_0003	2.0	3.0	1.0	384092	7840847	163	5	3	1	5	1	87	1	43	14	6	1	1	28	4	361	62	16%
MAV_AD_0003	3.0	4.0	1.0	384092	7840847	200	3	2	1	3	0	93	0	38	13	5	0	0	16	2	377	54	13%
MAV_AD_0003	4.0	5.0	1.0	384092	7840847	443	4	2	2	6	1	235	0	75	26	9	1	0	22	2	829	106	12%
MAV_AD_0003	5.0	6.0	1.0	384092	7840847	638	7	3	5	12	1	304	0	164	52	22	1	0	26	3	1239	225	17%
MAV_AD_0003	6.0	7.0	1.0	384092	7840847	1898	23	11	15	37	4	903	1	439	136	64	5	1	93	11	3640	603	16%
MAV_AD_0003	7.0	8.0	1.0	384092	7840847	2108	21	11	11	30	4	582	1	295	92	43	4	2	101	10	3314	411	12%
MAV_AD_0003	8.0	9.0	1.0	384092	7840847	2588	18	6	14	33	3	555	1	400	120	58	4	1	62	5	3864	541	13%
MAV_AD_0003	9.0	10.0	1.0	384092	7840847	3498	36	10	34	78	5	1214	1	1043	303	152	8	1	105	6	6494	1390	21%
MAV_AD_0003	10.0	11.0	1.0	384092	7840847	2381	41	14	32	82	6	1247	1	912	263	131	9	1	147	9	5276	1225	22%
MAV_AD_0003	11.0	12.2	1.2	384092	7840847	2132	42	14	30	80	6	1035	1	811	227	121	9	2	150	10	4671	1089	22%