RARE EARTHS

INVESTORS PRESENTATION MAN OF WAR IONIC ABSORPTION CLAY RARE EARTHS PROJECT

Brazil's highest grade ionic adsorption clay REE project

Dv

Praseodymium 140.908

41 Niobium 92.90

D E C E M B E R 2 0 2 4 This presentation has been prepared by Verde AgriTech Ltd. (the "Company") with the aim of providing in-depth technical details, here you can find comprehensive information on the project's location, geology, and full assay results for all rare earth elements.

Not An Offer

This presentation aims to provide detailed information about the Man of War Project and its exploration results. It is intended to share technical insights and project progress.

Not Investment Advice

The information in this presentation is based on current exploration results and is provided for informational purposes. For investment or financial decisions, recipients should conduct their own analysis or consult a professional.

No Liability

This presentation is based on the most up-to-date information available at the time of preparation. Although efforts have been made to ensure the accuracy of the data, results may vary due to ongoing exploration activities. The Company assumes no liability for any discrepancies or outcomes resulting from the use of this information.

Forward Looking Statements

This presentation includes forward-looking statements related to the Man of War Project. These projections are based on current data and estimates, and actual results may differ as exploration continues.

Qualified Person

The exploration results disclosed in this presentation have been reviewed and verified by Dr. Volodymyr Myadzel, PhD, a Qualified Person under NI 43-101, with over 25 years of experience in mineral exploration and resource estimation.

Investment Highlights

- Maiden Resource estimated in compliance with JORC 2012 Edition and NI 43-101 standards of 1,35 Bt @ 3,437ppm TREO, 793 ppm MREO, 594 ppm Nd₂O₃, 172ppm Pr₆O₁₁, 22ppm Dy₂O₃ and 5ppm Tb₄O₇ based on drilling undertaken in less than 47.9% of the prospective geological formation.
 - Nau de Guerra Target is potentially the world's highest grade ionic clay project with in-situ resources of 120Mt @ 3,627ppm TREO, 633 ppm Nd₂O₃, 183 ppm Pr₆O₁₁, 24 ppm Dy₂O₃ and 5ppm Tb₄O₇.
 - Alto da serra Target is potentially the world's highest grade ionic clay project with in-situ resources of 230Mt @ 3,683ppm TREO, 656ppm Nd,O, 188 ppm Pr,O, 26 ppm Dy,O, and 6ppm Tb,O,
 - Balsamo Target is potentially the world's biggest ionic clay project with in-situ resources of 1,146Mt @ 3,358ppm TREO, 575 ppm Nd₂O₃, 168 ppm Pr₆O₁₁, 21 ppm Dy₂O₃ and ppm Tb₄O₇.
- 2. The average concentrations amount to 624 ppm Nb₂O₅ and 21 ppm HfO₂, highlighting additional opportunities for valuable by-products..
- 3. Ionic adsorption clay REE mineralization confirmed by SGS.
- 4. Scoping study under way.
- 5. Favourable Location in Minas Gerais state, Brazil, just 4 km from Verde AgriTech mines.
- 6. Presence of scandium (up to 80 ppm).

Location and Project History

- 1. Tenement was applied by sister company, Verde AgriTech (TSE:NPK), on August 28, 2008;
- 2. Extensive geological exploration for phosphate was conducted, including 3,640 meters of diamond drilling;
- 3. In Q2 2024, two drill holes were chosen for re-assay;
- 4. Significant REE and MREE results identified;
- 5. SGS Metallurgical tests confirmed ionic absorption clay REE;
- 6. In Q3 2024, all 3,640 meters of diamond drilling were re-assayed;
- 7. In Q4 2024, a mineral resource estimate of 1.5 billion tons at 3,429 ppm TREO and 791 ppm MREO.

Strategic Location with Advanced Infrastructure

- 1. São Gotardo and Matutina region Approximately 40,000 residents in a well-established mining area and a robust service provider ecosystem;
- Located in the central region of Minas Gerais, Brazil, and conveniently close to Belo Horizonte (300km), Uberlândia (250km), São Paulo (630 km) and Vitória (820 km);
- 3. Access to low-cost renewable energy, primarily sourced from hydroelectric, solar, and wind power;
- 4. Proximity to grid power connections (5.36km);
- 5. Easy access to paved roads.
- 6. Over R\$300 million invested by Verde AgriTech in the area.
- 7. Man of War is located just 4 km from Verde's mines.

Exploration Targets

Man of War Project's tenements cover 4,708.67. hectares (47 km²)

Primary Targets

The Man of War Project includes 3 targets, covering a total area of 17.7 km²:

- * Nau de Guerra Target: 2.90 km²
- Alto da Serra Target: 3.40 km²
- Balsamo Target: 11.40 km²

Geology and Drilling: Alto da Serra Target

Alto da Serra Drill Results

From To Thicknoss

Hole	(m)	(m)	(m)	TREO	MREO ¹	La_2O_3	CeO ₂	Pr ₆ O ₁₁	Nd_2O_3	Sm ₂ O ₃	LREE	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₄ O ₇	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	HREE	Nb ₂ O ₅	CoO	MoO ₃	V ₂ O ₅
AP-AD-	4	45	41	3,950	990	857	1,755	206	746	103	3,667	25	62	7	31	5	11	1	7	1	133	282	657	113	5	806
01	4	35	31	4,065	1,042	878	1,764	214	786	109	3,751	26	67	7	34	5	12	1	8	1	152	314	643	119	6	799
AP-AD-	18	75	57	3,877	922	829	1,831	196	694	94	3,644	24	57	6	27	4	8	1	5	1	101	233	691	120	4	882
02	19	65	46	4,096	978	879	1,919	207	736	100	3,842	26	61	6	29	4	9	1	6	1	111	254	714	126	3	943
AP-AD-	40	100	60	3,559	859	798	1,641	186	644	86	3,355	21	50	5	24	3	7	1	4	1	88	204	630	100	4	854
03	40	80	40	4,056	985	912	1,855	213	738	99	3,818	24	58	6	28	4	9	1	5	1	103	238	695	109	3	964
AP-AD-	34	100	66	3,044	722	669	1,430	155	542	73	2,870	18	43	5	20	3	6	1	4	1	74	175	580	77	3	791
04	51	90	39	4,026	964	874	1,892	207	724	98	3,794	24	59	6	27	4	8	1	5	1	98	232	716	102	3	848
AP-AD-	26	75	49	3,947	935	878	1,815	202	697	98	3,691	24	59	6	29	4	10	1	6	1	116	256	694	104	5	736
05	51	82	31	3,139	724	709	1,476	158	540	75	2,957	18	44	5	21	3	7	1	4	0	79	182	599	101	3	603
AP-AD-	27	85	58	3,542	821	773	1,699	178	617	83	3,349	21	48	5	22	3	7	1	4	1	81	193	668	92	4	878
06	28	67	39	4,157	966	911	1,985	209	725	97	3,928	24	57	6	26	4	8	1	5	1	96	229	771	106	4	1,061
AP-AD-	45	105	60	3,692	873	796	1,746	188	654	91	3,475	22	54	6	25	4	8	1	5	1	92	218	676	109	5	781
07	60	105	45	4,464	1,055	964	2,110	227	790	110	4,202	27	66	7	31	4	10	1	6	1	110	263	808	144	5	882
AP-AD-	28	86	58	4,370	1,014	952	2,080	219	760	101	4,112	24	60	6	29	4	10	1	7	1	115	258	798	58	2	988
08	47	86	39	5,518	1,304	1,177	2,623	279	980	130	5,189	32	78	8	37	6	13	1	8	1	146	330	928	84	2	1,000
AP-AD-	38	91	53	3,777	881	836	1,795	188	663	88	3,570	22	53	5	24	4	8	1	5	1	86	207	646	119	4	821
09	44	86	42	4,006	952	877	1,888	202	718	95	3,780	23	57	6	26	4	8	1	5	1	94	225	672	130	3	775
AP-AD-	0	25	25	2,882	677	637	1,367	145	510	67	2,727	16	38	4	18	3	6	1	3	0	66	155	572	94	16	696
11	0	25	25	2,882	677	637	1,367	145	510	67	2,727	16	38	4	18	3	6	1	3	0	66	155	572	94	16	696
AP-AD-	9	70	61	3,906	937	862	1,806	200	703	98	3,669	24	59	6	27	4	9	1	5	1	101	237	669	111	11	748
18	12	70	58	4,000	967	874	1,850	206	726	101	3,756	25	61	6	28	4	9	1	5	1	104	243	663	113	12	715
AP-AD-	9	65	56	3,728	851	837	1,775	185	636	88	3,521	21	52	6	24	4	8	1	5	1	87	207	695	116	2	786
19	18	63	45	4,027	946	887	1,901	205	708	99	3,799	24	57	6	26	4	8	1	5	1	95	228	730	132	2	706

JORC/NI 43-101 - Mineral Resource Estimate

CUT-OFF TONNES Pr6O11 Nd2O3 **Dy2O3 MREO/TREO TREO MREO Tb407** TREO (ppm) % t ppm ppm ppm ppm ppm ppm 0 244,395,415 3,510.09 832.77 178.63 624.21 5.49 24.44 24% 1000 230,213,682 3,683.52 874.57 187.54 655.73 5.75 25.55 24% 2000 219,073,036 3,788.23 900.23 192.99 675.07 5.91 26.26 24% 3000 141,063,119 4,409.29 1063.75 227.6 798.07 6.98 31.1 24% 4000 59,874,108 5,759.81 1435.5 304.42 1078.24 9.67 43.17 25% 5000 31,256,635 6,970.41 1800.7 379.26 1357.06 11.93 52.46 26%

Alto da Serra Target

Resource estimated in compliance with JORC 2012 Edition and NI 43-101 standards, under the supervision of Qualified Person (QP) Dr. Volodymyr Myadzel, PhD, MAIG.

Geology and Drilling: Nau de Guerra Target

Legend < 1,000 ppm 1,000 to 2,500 ppm 2,500 to 4,000 ppm 4,000 to 6,000 ppm 6,000 to 8,000 ppm >= 8,000 ppm

AP-ND-15

D-02

50

8

000

11

Nau de Guerra Drill Results

Hole	From (m)	To (m)	Thickness (m)	TREO	MREO ¹	La ₂ O ₃	CeO ₂	Pr ₆ O ₁₁	Nd ₂ O ₃	Sm ₂ O ₃	LREE	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₄ O ₇	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	HREE	Nb ₂ O ₅	CoO	MoO ₃	V_2O_5
	0	43	43	3,968	969	889	1,810	208	728	102	3,737	25	58	6	27	4	8	1	5	1	96	230	735	108	8	774
AF-IND-02	0	15	15	5,217	1,348	1,163	2,288	287	1,015	144	4,897	35	82	8	38	5	11	1	7	1	131	321	879	132	6	804
	0	74	74	3,181	726	711	1,501	157	542	75	2,986	19	46	5	22	3	7	1	5	1	86	195	577	81	6	364
AP-IND-05	17	30	13	6,419	1,458	1,480	2,989	316	1,088	153	6,025	39	96	10	45	6	15	2	9	1	171	394	915	121	2	0
	0	40	40	2,599	593	578	1,241	128	444	62	2,453	15	37	4	17	2	5	1	3	0	62	146	519	80	7	572
AF-110-04	5	25	20	3,004	702	682	1,396	150	526	73	2,828	18	44	5	21	3	6	1	4	0	75	176	577	96	5	620
4P-ND-05	0	69	69	3,526	839	793	1,635	182	628	88	3,326	22	52	5	23	3	7	1	4	1	82	201	624	104	4	232
	9	26	17	5,690	1,456	1,317	2,478	313	1,092	154	5,355	39	91	10	40	6	11	1	7	1	130	335	836	138	0	0
AP-ND-06	0	43	43	3,058	730	675	1,416	157	547	76	2,871	18	45	5	21	3	7	1	4	1	82	187	594	100	12	612
	0	21	21	3,633	880	811	1,639	188	658	94	3,390	23	58	6	27	4	9	1	5	1	108	243	700	124	14	710
AP-ND-07	0	31	31	4,024	968	900	1,867	208	728	96	3,799	23	56	6	26	4	8	1	5	1	96	226	795	128	5	798
	0	26	26	4,537	1,092	1,020	2,108	236	822	108	4,293	26	62	7	28	4	8	1	5	1	102	244	899	129	4	848
AP-ND-08	0	39	39	4,594	1,141	998	2,097	248	854	117	4,314	28	71	8	32	5	10	1	6	1	118	280	830	148	3	804
	0	39	39	4,594	1,141	998	2,097	248	854	117	4,314	28	71	8	32	5	10	1	6	1	118	280	830	148	3	804
AP-ND-09	0	78	78	3,109	717	684	1,475	156	535	75	2,924	19	45	5	21	3	7	1	4	1	79	185	616	86	7	676
	20	34	14	6,063	1,398	1,418	2,840	312	1,039	145	5,753	37	86	9	38	5	11	1	6	1	116	310	1,107	121	6	1,232
AP-ND-11	0	38	38	3,386	817	738	1,568	174	615	82	3,178	21	49	5	23	3	7	1	4	1	94	208	641	87	7	650
	0	11	11	4,035	1,036	881	1,/32	215	/80	108	3,/1/	28	68	/	33	5		1	/	1	156	318	758	97	2	/15
AP-ND-12	0	22	22	3,589	838	785	1,709	181	630	84	3,389	21	48	5	22	3	/	1	4	1	88	200	709	119	8	744
	0	22	22	3,589	838	785	1,709	181	630	84	3,389	21	48	5	22	3	/	1	4	1	88	200	709	119	8	/44
AP-ND-13	0	17	17	3,432	779	761	1,663	170	585	78	3,250	19	44	5	20	3	6	1	4	0	73	175	656	95	9	601
	0	- 17	17	3,432	075	701	1,003	210	202	101	3,250	19	62	<u> </u>	20	3	0	1	4	1	/3	220	752	107	9	010
AP-ND-14	20	65 E0	20	4,209	975	1 262	1,990	206	1 061	1/0	5,970	24	02	10	29 40	4	9 12	1	0	1	97 120	239	755	102	2	010
	20	50	50	2 1 9 /	702	701	2,704	152	525	71	2,004	10	95	10	42	2	- 15	1	0	1	159	540 176	904 649	192	0	725
AP-ND-15	12	27	57 20	3,104	040	200	1,557	202	704	07	2 761	24	4Z	4	20	5	0	1	4	1	104	220	755	92 110	5	725
	 	52 //Q	20	4,000	940 878	900 797	1,637	205	704 661	97 Q1	3,701	24	57	6	27	4	2	1	5	1 1	104 Q2	239	629	100	29	615
AP-ND-16	2	-+ 22		5 01/	1 317	1 107	2 172	277	994	139	4 690	34	80	8	25	-+ 5	12	1 1	7	1 1	138	324	797	133	29 42	679
	- <u>-</u>	19	19	3 445	775	762	1 668	172	577	78	3 257	19	46	5	21	2	7	1	, Д	- 1	82	188	720	91	+∠ 11	613
AP-ND-17	2	16	14	4,102	923	916	1,987	206	687	92	3,887	22	54	6	25	3	8	1	5	1	92	216	852	96	12	659

1. * MREO are magnet rare earth oxides and comprise Nd, Pr, Dy and Tb

JORC/NI 43-101 - Mineral Resource Estimate

CUT-OFF	TONNES	TREO	MREO	Pr6011	Nd2O3	Tb4O7	Dy2O3	MREO/TREO
TREO (ppm)	t	ррт	ррт	ррт	ррт	ррт	ррт	%
0	120,481,274	3,618.83	843.8965	182.6729	632.0907	5.426375	23.70661	23%
1000	120,093,635	3,627.61	846.0375	183.1328	633.7037	5.439629	23.76139	23%
2000	114,857,818	3,710.07	866.1939	187.4996	648.8795	5.5566	24.25812	23%
3000	79,438,809	4,184.26	984.9346	212.9488	738.1489	6.311078	27.52578	24%
4000	37,989,011	4,959.13	1190.839	256.2027	892.8352	7.772803	34.02851	24%
5000	14,877,674	5,894.79	1420.333	307.5449	1063.203	9.233499	40.35152	24%

Nau de Guerra Target

Resource estimated in compliance with JORC 2012 Edition and NI 43-101 standards, under the supervision of Qualified Person (QP) Dr. Volodymyr Myadzel, PhD, MAIG.

OBY RARE EARTH

\mathbf{O}

Geology and Drilling: Balsamo Target

Balsamo Drill Results

Hole	(m)	10 (m)	(m)	TREO	MREO ¹	La ₂ O ₃	CeO ₂	Pr ₆ O ₁₁	Nd ₂ O ₃	Sm ₂ O ₃	LREE	Eu ₂ O ₃	Gd_2O_3	Tb ₄ O ₇	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	HREE	Nb ₂ O ₅	СоО	MoO ₃	V ₂ O ₅
AP-BD-	40	130	90	3,164	716	686	1,531	156	535	71	2,978	17	42	5	20	3	7	1	5	1	85	185	607	83	4	726
01	53	86	33	4,486	1,032	1,003	2,100	229	766	102	4,199	25	61	7	31	5	11	1	7	1	138	287	895	108	4	1,089
AP-BD-	38	132	94	2,939	672	641	1,411	146	502	69	2,769	17	41	4	19	3	6	1	4	1	74	170	542	78	3	586
02	55	113	58	3,645	856	813	1,704	186	640	88	3,431	21	53	6	24	4	8	1	5	1	92	213	651	94	2	639
AP-BD-	44	133	89	3,120	723	686	1,487	157	542	72	2,944	17	42	5	20	3	6	1	4	1	76	175	544	81	4	620
03	58	109	51	4,025	953	910	1,874	208	714	95	3,801	23	55	6	26	4	8	1	5	1	96	224	681	95	4	712
AP-BD-	41	136	95	3,074	691	668	1,502	152	515	70	2,907	17	42	4	20	3	6	1	4	1	70	167	513	74	6	613
04	59	118	59	3,939	922	896	1,848	203	688	93	3,729	23	55	6	25	4	7	1	4	1	85	210	635	89	6	670
AP-BD-	6	95	89	3,102	719	678	1,465	154	539	74	2,910	18	45	5	21	3	7	1	5	1	86	192	555	87	4	388
05	21	71	50	4,161	983	924	1,926	210	737	100	3,897	25	62	7	29	4	10	1	6	1	119	264	699	106	4	470
AP-BD-	44	134	90	3,397	800	776	1,567	174	598	81	3,195	20	49	5	23	3	7	1	5	1	88	202	599	94	6	728
06	59	119	60	4,413	1,058	1,024	2,000	230	791	106	4,152	26	65	7	30	4	9	1	6	1	112	260	726	118	6	806
AP-BD-	41	133	92	3,293	766	734	1,552	165	575	79	3,104	19	47	5	22	3	7	1	5	1	80	189	580	87	14	670
07	60	113	53	4,448	1,058	1,007	2,057	227	795	108	4,194	27	65	7	30	4	9	1	6	1	106	254	739	113	14	740
AP-BD-	0	76	76	3,554	777	799	1,744	172	578	77	3,371	19	46	5	21	3	7	1	4	1	77	183	587	91	7	307
08	4	59	55	4,090	904	927	1,992	201	673	89	3,882	22	52	5	24	3	8	1	5	1	87	208	664	100	7	288
AP-BD-	0	83	83	3,492	802	765	1,674	178	597	78	3,292	19	47	5	22	3	7	1	5	1	89	199	617	90	6	673
09	11	60	49	4,552	1,079	1,021	2,118	239	804	105	4,286	26	63	7	30	4	10	1	6	1	119	266	772	108	5	771
AP-BD-	37	126	89	3,139	724	675	1,515	160	540	71	2,960	18	44	5	20	3	7	1	4	1	77	179	583	73	6	699
10	58	92	34	4,557	1,077	981	2,157	235	804	105	4,283	27	67	7	31	5	10	1	6	1	119	274	822	107	4	870
AP-BD-	46	136	90	2,993	691	636	1,453	151	517	68	2,825	17	40	4	19	3	6	1	4	1	73	168	548	79	18	648
11	62	113	51	3,857	925	846	1,806	201	693	91	3,638	22	53	6	25	4	8	1	5	1	95	219	675	98	20	709
AP-BD-	38	131	93	2,906	653	615	1,405	141	487	67	2,715	17	42	5	21	3	7	1	5	1	91	190	541	86	7	607
12	55	80	25	3,646	863	791	1,604	181	641	91	3,308	23	62	7	33	6	13	2	9	1	182	338	636	123	4	805
AP-BD-	18	103	85	3,667	827	764	1,807	180	617	82	3,450	20	48	5	24	4	8	1	5	1	102	217	663	97	4	735
13	35	98	63	4,352	1,018	947	2,060	222	761	100	4,090	24	58	6	29	4	10	1	6	1	122	262	779	121	5	812

OBY

JORC/NI 43-101 - Mineral Resource Estimate

CUT-OFF	TONNES	TREO	MREO	Pr6011	Nd2O3	Tb4O7	Dy2O3	MREO/TREO							
TREO (ppm)	t	ррт	ррт	ррт	ррт	ррт	ррт	%							
0	1,182,191,249	3,279.62	749.73	163.61	560.66	4.77	20.68	23%							
1000	1,145,624,209	3,357.88	768.7	167.82	574.98	4.87	21.04	23%							
2000	982,720,026	3,656.44	845.13	184.88	632.29	5.28	22.68	23%							
3000	681,112,611	4,144.41	966.72	211.9	723.53	5.93	25.36	23%							
4000	309,729,857	5,028.34	1186.71	260.23	887.63	7.34	31.5	24%							
5000	101,911,240	6,129.23	1445.42	319.1	1079.64	8.85	37.83	24%							

Balsamo Target

Resource estimated in compliance with JORC 2012 Edition and NI 43-101 standards, under the supervision of Qualified Person (QP) Dr. Volodymyr Myadzel, PhD, MAIG.

Highest Grade Ionic Adsorption Clay Deposit

	OBY ¹ Nau de guerra	OBY ¹ Alto da Serra	OBY ¹ Balsamo	OBY ²	Meteoric ³	Aclara Brazil ⁴	Viridis ⁵	Serra Verde ⁶
Project	Man of War	Man of War	Man of War	Man of War	Caldeira	Carina	Colossus	Pela Ema
Market Cap in CAD (December 09, 2024) ⁵	-	-	-	-	186M	69M	26M	-
Resource (Mt)	120	230	1,146	1,496	619	298	201	911
TREO (ppm)	3,620	3,684	3,358	3,429	2,538	1,452 ppm	2,590	1,200
MREO (ppm)	844	875	769	791	600	329 ppm	668	242
Pr ₆ O ₁₁ (ppm)	183	188	168	172	147	63 ppm	157	49
Nd ₂ O ₃ (ppm)	632	656	575	592	425	221 ppm	480	161
Tb ₄ O ₇ (ppm)	5	6	5	5	5	6 ppm	5	4
Dy ₂ O ₃ (ppm)	24	26	21	22	23	39 ppm	27	28

1. JORC 2012 Mineral Resource Estimates for the Man of War Project at a TREO 1,000PPM cut-off grade

2. OBY's global total project.

3. Meteoric: MEI Announcements dated 14 May & 13 June 2024.

4. Aclara Assets.

OBY RARE EARTHS CO.

5. Viridis Corporate Presentation.

6. Serra Verde Corporate Presentation.

7. Source: Yahoo Finance

Niobium and Scandium Highlights

Niobium (Nb₂O₅) Results:

- Niobium, a critical metal used in the production of high-strength steel, has shown robust concentrations in our deposit.
- The average Nb₂O₅ grade across the entire deposit is 758 ppm, with grades up to 2,260ppm of Nb2O5.

Nau de Guerra

Balsamo

Alto da Serra

OBY RARE

EARTHS

CO.

- Key drill hole results (Nb₂O₅):

Scandium (Sc₂O₃) Results*:

- Scandium is utilized in aerospace components, and as an additive in metal halide lamps. Scandium is also important in the production of high-performance aluminum alloys.
- Drill holes results **Sc₂O₃**:

Nau de Guerra

• AP-ND-07: 9m @ 72 ppm Sc2O5 [16m] and 1m @ 78 ppm Sc2O5 [18m]

AP-ND-08: 782 ppm @ 42 meters [0]
AP-ND-14: 730 ppm @ 68 meters [0]

AP-BD-01: 641 ppm @ 90 meters [40]

AP-BD-13: 671 ppm @ 85 meters [18]

AP-AD-08: 798 ppm @ 58 meters [28] AP-AD-19: 695 ppm @ 56 meters [9]

- AP-ND-08: 10m @ 63 ppm Sc2O5 [1m] and 1m @ 76 ppm Sc2O5 [2m]
- AP-ND-14: 11m @ 107 ppm Sc2O5 [22m] and 1m @ 127 ppm Sc2O5 [25m]

OBY RARE EARTHS CO.

APPENDIX

C

Building Stronger Communities Through Sustainable Practices

Verde Agritech, lead by Cristiano Veloso, is committed to balancing community growth with environmental stewardship. Sustainable practices are designed to empower local communities, promote environmental education, and protect natural resources through initiatives such as:

Cultivando Amor Project:

Verde AgriTech's Cultivando Amor Project donated over R\$270,000 to support hospitals, such as the Hospital do Câncer of Patrocínio and Santa Casa de São Gotardo. This project also helped schools, and shelters across 16 cities in the region.

Social iniciative and literature:

Verde is committed to social initiatives and proudly sponsored the inaugural Festival Literário de São Gotardo, Flisangô. Organized by the São Gotardo Municipal Government, through the Departments of Sports and Tourism, as well as Education, the festival showcased a diverse program of culture, stories, and knowledge.

Building Stronger Communities Through Sustainable Practices

Spayed female cat. She was adopted by an employee of FVS.

Animal Welfare:

Verde's Stray Animal Neutering Campaign partners with local associations to control stray animal populations through neutering and adoption.

Young tree seedlings and Verde's worker planting one, aiding reforestation.

Reforestation:

Since 2019, Verde has planted **30,928 trees**, demonstrating its commitment to environmental restoration. This initiative supports carbon capture, biodiversity conservation, and soil regeneration.

Building Stronger Communities Through Sustainable Practices

Carro de boi Festival

Community engagement:

Verde is committed to community development and actively engage in partnerships to support social initiatives that contribute positively to local communities.

In 2022, the company has donated over **R\$300,000** towards regional initiatives supporting sport, culture, education, and health, like the Carro de Boi Festival. More than 10,000 people attended the event.

Environmental awareness lecture on recycling at E.M. Sonho Meu, in São Gotardo/MG.

Environmental education:

Verde partnered with 6 local schools on environmental educational initiatives for sanitation, preservation, recycling and sustainable agriculture practices.

Via the "Planting My Own Food" project, they incentivize food autonomy, emphasizing the significance of organic, sustainable farming practices through the collaborative establishment of school gardens.

Transforming Infrastructure: Enhancing Safety and Community Impact

Before- Section with potholes and inefficient lateral drainage and boggy areas.

Currently paved area.

Verde AgriTech upgraded and paved **22 km of roads** in the project region. This initiative involved widening, paving, and implementing drainage systems, creating a lasting benefit for the local community, improving accessibility for residents.

Transforming Infrastructure: Enhancing Safety and Community Impact

Verde has upgraded key infrastructure, including the construction of a new, reinforced bridge over Rio Borrachudo. The previous bridge was narrow and unsafe, limiting transportation. The new bridge improves safety and efficiency for heavy vehicles and local residents, reducing travel time and supporting regional development, while also meeting the company's logistical needs.

Construction of the reinforced bridge over Rio Borrachudo, enhancing safety and regional connectivity.

New reinforced bridge over Rio Borrachudo, improving safety and heavy vehicle access.

From Exploration to Production

5.9 billion tons of total resources approved by the Brazilian Mining Agency.

OBY

RARE

CO.

EARTHS

3.32 billion tons of resources certified under Canadian National Instrument 43-101⁽¹⁾

Strategic location

Verde's reserves are situated in São Gotardo, Minas Gerais state, Brazil, adjacent to a major food-producing region.

Map Captions

Verde's operations Mine pits, 2 operating plants, +1 to be built

verde

Agricultural market Proximity to key core potash consumption market

1. * According to Pre-Feasibility Study (Compliant with NI 43-101 standard). Considers Proven and Probable reserves and 9.19% K2O grade. Combined measured and indicated mineral resource of 1.47 billion tons at 9.28% K2O and an inferred mineral resource of 1.85 billion tons at 8.60% K2O (using a 7.5% K2O cut-off grade).

25

From Process Development to Production

Verde's production plants are based in São Gotardo, Minas Gerais State, Brazil.

Plant 1

Plant 1, with a production capacity of 0.6 million tonnes per year, leverages a diverse array of cutting-edge technologies to drive its operations. The integration of Micro S Technology, 3D Alliance, Cambridge Tech, and Bio Revolution plays a pivotal role in elevating the performance of the products, while simultaneously ensuring enhanced efficiency and increased sustainability.

Plant 2

Plant 2, with a production capacity of 2.4 million tonnes per year, is dedicated exclusively to largescale production. To achieve this objective, Plant 2 leverages the cutting-edge technologie of Cambridge Tech in its operations. This advanced technologie is specifically designed to ensure superior product outputs while optimizing operations with efficient and streamlined production processes.

Bioproduction Plant

Bioproduction Plant excels in large-scale production of meticulously selected biological additives, cultivated in the Microbiology Research Lab. These additives are seamlessly incorporated into the products through the Bio Revolution technology.

What Are Rare Earth Elements?

Rare earth elements (REEs) are a group of seventeen elements critical to modern technologies. They are key components in developing permanent magnets, batteries, and other high-tech applications.

Among them, Neodymium (Nd), Praseodymium (Pr), Dysprosium (Dy), and Terbium (Tb) are especially valuable due to their use in producing powerful, lightweight permanent magnets for wind turbines and electric vehicles.

The global rare earth metals market grew from \$6.58 billion in 2022 to \$7.29 billion in 2023, with a 10.8% CAGR. Projections indicate further growth, reaching \$9.6 billion by 2027 at a CAGR of 7.1%.1

Global REEs Supply:

OBY RARE

CO.

EARTHS

- China controls up to 90% of REEs supply and the permanent magnet market.
- The Western world is striving to develop independent supplies of critical materials.
- International demand for REEs will exceed supply, leading to a significant increase in prices.

1 H																	^{helium} 2 He
	^{beryllum} 4 Be											5 B	6 C	ntrogen 7 N	8 0	9 F	Ne
11 Na	12 Mg		Light I Earth Ele LRE	Rare ements Es	Heavy Earth El HRE	Rare ements Es	High Va Demand	alue, High I Elements				aluminium 13 AI	14 Si	15 P	sulfur 16 S	17 CI	18 Ar
19 K	^{colcium} 20 Ca	21 Sc	^{sitanium} 22 Ti	vanadium 23 V	²⁴ Cr	^{manganese} 25 Mn	Fe	27 Co	^{nickel} 28 Ni	29 Cu	30 Zn	31 Ga	^{germanium} 32 Ge	arsenic 33 AS	34 Se	35 Br	36 Kr
37 Rb	strontium 38 Sr	39 Y	^{zirconium} 40 Zr	41 Nb	⁴² Mo	43 TC	ruthenium 44 Ru	^{thodium} 45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	iodine 53	54 Xe
constant 55 Cs	56 Ba		hafnium 72 Hf	Tantalum 73 Ta	TA V	75 Re	76 Os	77	78 Pt	^{gold} 79 Au	B0 Hg	81	B2 Pb	Bi	B4 Po	astatine 85 At	Rn
87 Fr	Radium 88		numerfordium 104 Rf	105 Db	seaborgium 106 Sg	107 Bh	108 HS	^{meltherium} 109 Mt	110 DS	roentgerium 111 Rg				0.			
			lerthanom)	cenum	annodymum	readumum	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
			Ľa	Ce	Pr	Nd	Pm	Sm	Ĕи	Ğ́d	тв	Ďу	Но	Ēr	Τ̈́m	Ϋ́b	Lu

EARTHS

CO.

NdPr

NdPr is a crucial combination of neodymium (Nd) and praseodymium (Pr) in the rare earth market. NdPr is indispensable for modern and sustainable technology, with a wide range of applications from consumer electronics to renewable energy and transportation.

Applications of NdPr

- High-Performance Magnets: Essential for manufacturing neodymium magnets, the strongest commercially available magnets.
- Electric Vehicles (EVs): Used in efficient electric motors.
- Aircraft: Vital components in aircraft engines.
- Wind Turbines: Key in creating efficient and high-performance generators.

Derived Products

- Neodymium Magnets (NdFeB): Primary component.
- Electronic Device Motors: Smartphones, laptops, and other gadgets.
- Medical Equipment: Used in devices like MRI machines.

4 REE have permanent magnet power

Light Rare Earth Elements (LREE)

Heavy Rare Earth Elements (HREE)

Scandium and Niobium

Scandium and **Niobium** are pivotal elements in the rare earths market, driving technological innovation across industries such as aerospace, automotive, and clean energy.

Nb

Niobium

92.906

Key Benefits

- Lightweighting: Scandium is critical for reducing the weight of aluminum alloys, improving performance in aerospace and electric vehicles.
- Weldability: Its ability to enhance the weldability of aluminum alloys ensures strong, lightweight structures that are crucial in high-performance industries.
 - Clean Energy: Scandium alloys play an important role in renewable energy technologies, such as wind turbines and fuel-efficient transport, contributing to global decarbonization efforts.

Key Benefits

- Strength and Durability: Niobium strengthens steel alloys, which are vital for infrastructure projects and pipelines, supporting global energy transition efforts.
- Corrosion Resistance: Improves the longevity of materials in harsh environments, especially in industries like oil and gas.
 - Strategic Importance: Niobium's role in superalloys is crucial for the defense and aerospace sectors, helping ensure reliable performance in extreme conditions.

Scandium 44.956

The Ionic Advantage

OBY

RARE

CO.

Redefining the Global Supply Chain

China currently controls over 90% of global REO production, with near-total dominance in the supply of critical heavy rare earths like dysprosium and terbium. This overwhelming control poses a significant risk to global industries, particularly in the West, raising critical questions about supply chain security, national defense, and the future of clean energy.

> "The rare earths market is ripe for disruption, and companies that can provide alternative sources to the dominant suppliers will play a critical role in the future of energy and technology. Diversification is not just beneficial—it's essential." Simon Moores, Benchmark Mineral Intelligence Director

Man of War Project Rare Earths is positioned to be a game-changer in this landscape.

•Strategic Location in Brazil: Man of War Project's projects are based in Brazil, one of the few countries with significant rare earth reserves outside of China. This geographic advantage allows us to provide a reliable and diversified supply of rare earths.

•Disruptive Ionic Clay Technology: By focusing on Ionic Clay deposits, Man of War Project can operate with lower capital expenditure and reduced environmental impact compared to traditional hard rock mining, making it a cost-effective alternative to Chinese supply.

•Securing the Supply Chain: Man of War Project is committed to breaking the Chinese monopoly by providing Western and allied nations with a stable and secure supply of rare earths, crucial for maintaining technological and industrial independence.

Strong Demand Fundamentals: NdPr Market Outlook

Global demand forecasts for NdPr depend on the market penetration of renewable energy technologies.

U.S. Efforts to Reduce Dependency on Chinese Rare Earths

In response to concerns about over-reliance on Chinese exports for critical minerals, the

United States has introduced measures aimed at reducing this dependency.

Key Initiatives:

OBY

RARE EARTHS

CO.

- Policy Adjustments: The U.S. Trade Representative has implemented stricter tariff measures on imports from China, with the goal of increasing the demand for domestically sourced critical minerals.
- **Strategic Development**: Efforts are being made to advance projects within the U.S., particularly in regions like Wyoming and Arizona, to establish a more self-reliant supply chain for rare earth elements.
- National Security Concerns: These measures are part of a broader strategy to secure U.S. supply chains, ensuring that critical materials necessary for defense and energy production are less dependent on foreign sources.

These steps are intended to position the U.S. in a more secure and sustainable role within the global rare earth market, reducing potential geopolitical risks associated with supply chain dependencies.

World Mine Production of REO¹

Strengthening US-Brazil Collaboration on Critical OM Minerals

Elizabeth Frawley Bagley, United States of America Ambassador in Brazil

•2020 Initiative: US-Brazil Critical Minerals Working Group

In 2020, the *US-Brazil Critical Minerals Working Group* was formed to enhance bilateral cooperation on critical minerals. This initiative plays a crucial role in securing vital resources such as rare earths, which are essential for advanced technologies like renewable energy, electric vehicles, and defense systems.

•Key Goals: Strengthening Supply Chain Connectivity

The primary focus is on *increasing inter-connectivity* between the US and Brazil in critical mineral supply chains. By creating more resilient supply channels, both nations aim to reduce dependency on single-source suppliers, particularly China, and diversify their access to rare minerals critical for industrial and technological development.

•2024 Plan: US-Brazil Rare Earths Partnership

In *May 2024*, the US Ambassador to Brazil announced a landmark initiative to increase the *purchase of critical minerals* from Brazil. This agreement reflects a shared commitment to reduce vulnerabilities in global supply chains. The official announcement of the plan is expected at the *G20 Summit in November 2024*, further solidifying the strategic partnership between the two nations.

1. Rare Earths America Presentation. October 2024.

2. US Wants Partnership with Brazil for Critical Minerals, says American Ambassador

China's Vertical Integration Controls the Rare Earth Supply Chain

China accounts for approximately ~90% of all rare earth oxide production globally; and effectively 100% of all heavy rare earth oxide production

Global market share of rare earth supply chain (2023 estimate)

Price Settings for Rare Earths are not Sustainable

China has consolidated its rare earths enterprises, forming two mega conglomerates that have enhanced China's purchasing power.

Western REO Producers Quarterly Net Operating Cash Flow

Oby Rare Earths offers a vital alternative to China's dominance in the rare earth supply chain, supporting a more diversified and sustainable future.

OBY RARE EARTHS CO.

1. Source: Meteoric Corporate Presentation. September 2024.

Risk Factors

The following factors may materially impact the development and success of the Man of War Project or any potential future operations related to rare earth exploration:

Exploration and Resource Uncertainty:

The current project is in the exploration stage, and there is no guarantee that further drilling or studies will confirm economically viable rare earth deposits. Initial results are promising, but additional data may reveal variations in grades or mineralization that are less favorable than expected. The estimation of mineral resources is based on limited information, and subsequent exploration may yield different outcomes.

Permitting and Regulatory Delays:

The development of mineral resources requires multiple permits and approvals from various governmental agencies. Delays or failure to obtain the necessary environmental, operational, or communityrelated permits could significantly postpone or even prevent the advancement of the project.

Capital and Financing Risks:

The development of the Man of War Project will require substantial capital investments. There is no certainty that Verde will secure financing on favorable terms, or at all, which could delay or reduce the scope of future exploration and development efforts. Market conditions and investor sentiment in the resource sector could further affect the availability of funds.

Operational Risks:

The success of the exploration program depends on the availability of skilled labor, equipment, and reliable infrastructure. Any disruptions in the supply chain, technical challenges, or lack of qualified personnel could hinder the progress of the project and increase costs beyond initial estimates.

RARE EARTHS